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SUMMARY 

Regular perturbation expansions are used to analyse the fluid dynamics of unsteady, inviscid, slender, thin, 
incompressible (constant density), axisymmetric, upward and downward, annular liquid jets subjected to non- 
homogeneous, conservative body forces when both the annular jets are very thin and the gases enclosed by and 
surrounding the jet are dynamically passive. Both inertia- and capillarity-dominated annular jets are considered. It 
is shown that, for inertia-dominated jets, closure of the leading-order equations is achieved at second order in the 
perturbation parameter, which is the slenderness ratio, whereas closure is achieved at first order for capillarity- 
dominated jets. The steady leading-order equations are solved numerically by means of both an adaptive finite 
difference method which maps the curvilinear geometry of the jet onto a unit square and a fourth-order-accurate 
RungeKutta technique. It is shown that the fluid dynamics of steady, annular liquid jets is very sensitive to the 
Froude and Weber numbers and nozzle exit angle in the presence of non-homogeneous, conservative body forces. 
For upward jets with inwardly or axially directed velocities at the nozzle exit the effect of the non-homogeneous, 
conservative body forces is to increase the leading-order axial velocity component, decrease the jet’s mean radius 
and move the stagnation point downstream. For downward jets with radially outward velocity at the nozzle exit the 
axial velocity component decreases monotonically as the magnitude of the non-homogeneous, conservative body 
forces is increased. 
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1. INTRODUCTION 

In a previous paper the author’ analysed the fluid dynamics of slender, thin, upward and downward, 
annular liquid jets (Figure 1) subject to surface tension and gravity by means of regular perturbation 
methods using the velocity potential. In this paper the fluid dynamics of slender, thin, annular liquid 
jets subject to surface tension, gravity and non-homogeneous, conservative body forces which depend 
on the jet’s thickness is analysed by means of perturbation methods using the Euler equations. The 
paper may be considered as complementary to Reference 1, where the fluid dynamics of slender, 
annular liquid jets was analysed in the absence of non-homogenous, conservative body forces. 
Therefore, by comparing the formulation and results presented here with those of Reference 1, one 
may easily determine the effects of non-homogeneous, conservative body forces on inviscid, slender, 
thin, annular jets. 

The paper has been organized as follows. The dimensional governing equations and boundary 
conditions are presented in Section 2, together with the non-homogeneous, conservative body forces. 
Perturbation methods for inviscid, thin and slender, annular liquid jets are employed in Section 3 to 
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Figure I .  Schematic diagrams of downward (left) and upward (right) annular liquid jet 

derive the leading-order equations of both inertia- and capillarity-dominated, annular jets when the 
non-homogeneous, conservative body forces are important at leading order. Steady, annular liquid jets 
are considered in Section 4, where the analysis presented in the paper is extended to other types of non- 
homogeneous, conservative body forces. In Section 5 some examples which illustrate the steady fluid 
dynamics of inertia- and capillarity-dominated, upward and downward, annular liquid jets are 
presented as hc t ions  of the nozzle exit angle, magnitude of the non-homogeneous, conservative body 
forces and Froude and Weber numbers. 

2. GOVERNING EQUATIONS 

The fluid dynamics of unsteady, axisymmetric, incompressible (constant density), inviscid, irrotational, 
annular liquid jets subjected to non-homogeneous, conservative body forces is governed by the 
continuity and Euler equations and the irrotationality condition, i.e. 

p * ( g + u  G f V  ar* =- -+p*g* -= ,  aP* 
a w* 

*&* *”? 

av* ap* aw* 
a’*) ar* ar* 9 

az.+v*F =----- (3) 

where asterisks denote dimensional quantities, r* and z* are the radial and axial co-ordinates 
respectively, p* is the pressure, p* is the density, g* is the gravitational acceleration, W* is the 
potential of non-homogeneous, conservative body forces and u* and v* denote the liquid’s axial and 
radial velocity components respectively. 
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In this paper it is assumed that the potential of non-homogeneous, conservative body forces is 

* A* w =-- 
b*3, 

where A* denotes a positive constant, here referred to as the constant of the non-homogeneous, 
conservative body forces or simply as the body force constant, and b* is the annular jet’s thickness. 

Equation (5) has the same functional dependence on the annular jet’s thickness as the force potential 
of intermolecular, attractive, long-range London-van der Waals forces which play an important role in 
very thin, viscous films and fluid l a ~ e r s . 2 ~  For example, the break-up of slow viscous films along solid 
surfaces and slow viscous fiee films has been attributed to London-van der Waals forces.- These 
forces are due to the asymmetry of intermolecular force fields in the neighbourhood of phase 
boundaries. 

According to equation (5) ,  W* is only a h c t i o n  of t* and z* and the non-homogeneous, 
conservative body forces have no component along the radial direction. Note that the jet’s thickness has 
been measured perpendicularly to the z-axis; if it were measured perpendicularly to the jet’s mean 
radius, b* would have to be replaced by h* in equation (5), where h* = b* cos 8, tan 8 = aR*/az* and 
R* denotes the jet’s mean radius, i.e. R* = (RT + R;)/2. 

Equations (1H4) are subject to the following kinematic and dynamic boundary conditions at the 
annular liquid jet’s interfaces: 

aR* aRr 
v*(Rf , z*, t*) = + u*(RT, z*, t*) 2, i = 1,2, 

at* az* 

where RY and R; are the radii of the jet’s inner and outer interfaces respectively, CT* is the liquid’s 
surface tension and Pi and P; denote the pressures of the gases enclosed by and surrounding the 
annular liquid jet respectively. These gases will be assumed to be dynamically passive, i.e. P; and P; 
will be assumed to be spatially uniform, since their density and dynamic viscosity are in general much 
smaller than those of liquids. 

In addition, initial conditions and boundary conditions at z* = 0, i.e. at the nozzle exit, must be 
provided. These boundary conditions must be obtained by matching the inviscid flow inside the nozzle 
to that of the free, annular jet. Since the flow inside the nozzle must satisfy the no-penetration 
condition at the solid walls, whereas the boundary conditions for the free, annular jet involve free 
surfaces, a transition from the no-penetration to the free surface flow is expected. Such a transition is 
not considered in this paper, where the interest lies in the region below the nozzle exit. 

For thin and long or slender, annular liquid jets, A = bi/RZ; and E = R$/L* << 1, where bt;, Rt; and 
L* denote respectively (constant) reference values for the jet’s thickness and mean radius and a 
characteristic axial distance or wavelength; for example, they may denote the jet’s mean thickness and 
radius at the nozzle exit and the convergence length respectively. In this paper it is assumed that 
A = 0(€2). 
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If the radial and axial co-ordinates are non-dimensionalized with respect to Rt; and L* respectively, 
the axial and radial velocity components with respect to u: and E U ~ ,  respectively, where u: denotes a 
characteristic axial velocity component, b* with respect to R:, t* with respect to L*/u:, R;(i = 1,2) 
with respect to Rf, and the pressure with respect to P * u ; ~ ,  where ut; is a (constant) reference axial 
velocity component at the nozzle exit, equations (1 H 4 )  and (6H8) become 

aR. aR. 
v(Ri, Z ,  t )  = 2 + u(Ri, z, t ) - ,  i = 1,2, 

at az 

where Fr = u;*/g*L* is the Froude number, We =p*R:ut;'/c* is the Weber number and 
A ,  = 3 A * / ~ * u ; ~ R f , ~  denotes the non-dimensional constant associated with the non-homogeneous, 
conservative body forces. 

The length used to non-dimensionalize the axial co-ordinate in this section may be replaced by 
ut;2/g*, which corresponds to a Froude number equal to one, and the condition of slenderness implies 
that u;2/g* >> Rt;. 

Depending on the magnitude of the Froude and Weber numbers and the non-dimensional constant 
which characterizes the non-homogeneous, conservative body forces, several flow regimes may be 
identified. Note that the Weber and Froude numbers represent the ratios of inertia to gravity and 
surface tension respectively, while the non-dimensional body force constant is the ratio of non- 
homogeneous, conservative body forces to inertia. In the absence of non-homogeneous, conservative 
body forces, the inertia-dominated flow regime corresponding to large Weber numbers, i.e. 
We = W C Z n  and Fr = F€c2"', and the capillary regime corresponding to We = 0(1) and 
Fr = FC2"', where Wand Fare 0(1) and n and m are natural numbers such that n 2 1 and m 2 0, 
have been previously analysed' and will not be discussed here, where the emphasis will be placed on 
sufficiently thin, annular liquid jets such that the non-homogeneous, conservative body forces are 
important at leading order. We thereore assume that AH = where 1 = O(1), and study an inertia- 
and a capillarity-dominated regime in Sections 2.1 and 2.2 respectively. 
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2.1. We = O(c4) and Fr = O( 1) 

the jet's mean radii at the inner and outer interfaces can be written in terms of t2 as 
If We = c4 W, where W = U(1) and Fr = 0(1}, the liquid's velocity components, the pressure and 

= uo + c2u2 + 0(€4), 

= wo + €zW2 + 0(€4), 

P =Po + tZp2 + 0(t4), 

R, = Ro + t2R12 + O(c4), 

R2 = Ro + E ~ R ~ ~  + O(c4). 

Note that b = R, - Rl = ~~b~ + O(t4), where, for example, b2 = Ru - R12. 
Expansion of the kinematic (equation (13)) and dynamic (equations (14) and (15)) boundary 

conditions at R, and R2 in Taylor series around Ro followed by substitution of equations (16H20) into 
equations (9H15) results in a system of equations in powers of c2. Equating terms of O(co) yields 

h o  h o  au, +o+- 1 I 2 ab, , 
-+uo-+wo-= - -  
at az ar az Fr bi az 

_-  ah - 0, 
ar 

h 0  - = 0, 
ar 

Pi -po(Ro, z ,  t )  = 0,  i = 1,2. (26) 
Equations (23) and (24) imply that po = C(z, t )  and uo = B(z, t )  respectively, while equation (26) 

requires that, for mathematical compatibility, po = C(z, t )  = P, = P2. Therefore, since the gases 
enclosed by and surrounding the annular liquid jet were assumed to be dynamically passive, po is at 
most a function of time. 

The solution of equation (21) is 

B' D 
Vo = -T+7 

where D is a function of z and t and the prime denotes partial differentiation with respect to z. 
Substitution of equation (27) into equation (25) yields 

i a ~ ;  i a ( ~ ~ ; )  
2 at 2 az ' 

D = - - + - -  

while equation (22) becomes 

aB aB 1 2 ab2 -+B-=-+--. 
at az Fr bi az 
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To @r2) the radial momentum equation and dynamic boundary conditions become respectively 
avo avo avo _ -  - 24,- - vo-, 

ar at az ar 

The solution of equation (30) is 

+E(z , t ) ,  

where E can be calculated from the condition that (see equation (31)) p2(R0, z ,  t )  = 0, i.e. 

E(z, t )  = ($ + BD') lnRo 

The kinematic boundary conditions to O(c2) are 

which can be subtracted to yield 

which is the leading-order continuity equation. 
The dynamic boundary conditions to O(c4) become 

l$Po 2 aP2 1 _ _  ap0R,4 - --R12 - -R12 -p4 = - 
ar 2 ar, ar WR, ' 

Equations (36) and (37) may be added to yield 

(33) 

(34) 

(35) 

(36) 

(37) 

which may be written using equation (32) as 

0 2 2  
& ( $ + B z ) + $ [ ( g ) 2 - 2 $ ( $ )  - 2 B g ]  =-+- Ri WRob2' (39) 

Equation (39) may be further simplified by substituting aB/& from equation (29) into that equation. 
Equations (28), (29), (35) and (39) represent a system of partial differential equations for B,  D, R, 

and b2 which has the same form as that for inviscid, annular liquid jets in the absence of non- 
homogeneous, conservative body forces;' therefore it may be analysed by means of the adaptive finite 
difference method developed in Reference 7. Once the values of B, D, R, and b, have been determined, 
E may be calculated from equation (33). 

It must be pointed out that since equation (39) involves aD/az, while equation (28) involves aRO/az, 
second-order spatial derivatives of Ro with respect to z appear in equation (39). These derivatives 
demand that B(0, t),  R,,(O, t), R2,(0, t )  and aR,(O, t)/az be specified. 
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The equations derived so far are also valid for We = O ( P )  with n 2 6;  for these Weber numbers W 
has to be set to infinity in equation (39). For n = 2 it can be easily shown that an inconsistency arises in 
the dynamic boundary conditions at O(t2). 

The analysis presented in this subsection also holds for Fr = O ( E - ~ ~ ) ,  where m is a natural number 
greater than or equal to zero. The case n = 0 has been treated above, whereas the cases corresponding 
to n 2 1 may be easily deduced from equation (29) by simply setting Fr to infinity in that equation. 
Furthermore, the regular perturbation method employed in this subsection indicates that, if the Weber 
number is sufficiently large, compatibility of the dynamic boundary conditions at the jet’s interfaces 
implies that the liquid’s pressure be identical to those of the gases enclosed by and surrounding the 
annular liquid jet. 

In order to handle a pressure difference between the gases enclosed by and surrounding the annular 
jet, surface tension effects must be much larger than those considered in this subsection, as indicated in 
the next subsection. 

2.2. We = O(1) and Fr = O(1) 

The capillarity-dominated flow regime is characterized by We = O(1) and Fr = F c Z m ,  where 
F = O(1) and m 2 0, and may be analysed in exactly the same manner as the inertia-dominated flow 
regime. Here, only the case We = O(1) and Fr = O(1), i.e. m = 0, is considered. For these values of 
the Weber and Froude numbers, equations (28), (29) and (35) hold, while the dynamic boundary 
conditions to O(EO) become 

which may be added and subtracted to yield respectively 

i.e. the difference between the pressure of the gases enclosed by and that of the gases surrounding the 
annular liquid jet is balanced by surface tension. Furthermore, since these gases were assumed to be 
dynamically passive, equations (41a) and (41b) imply that both the liquid’s pressure and the jet’s mean 
radius respectively are at most hc t ions  of time, i.e. the annular liquid jet is a cylindrical one. Equation 
(41b) may be used to determine Ro and equations (29) and (35) may be employed to determine B 
and b,. 

The analysis presented in this subsection is also valid for Fr = O ( E - ~ ~ ) ,  where rn is a natural number 
greater than or equal to zero. The case n = 0 has been treated above, whereas the cases n 2 1 may be 
easily deduced from equation (29) by simply setting Fr to infinity in that equation. Furthermore, the 
results presented in this and the previous subsection reduce to those of Reference 1 in the absence of 
non-homogeneous, conservative body forces. 

It must be noted that the perturbation methods of this subsection indicate that, when the Weber 
number is O(l), the leading-order equations are closed at leading order, while the results of the 
previous subsection indicate that, for large Weber numbers, closure of the leading-order equations is 
achieved at fourth-order in the dynamic boundary conditions at the jet’s interfaces. 

3. STEADY, ANNULAR LIQUID JETS 

The equations presented in Sections 2.1 and 2.2 have analytical solutions for steady, annular liquid jets 
as indicated in the next subsection. 
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3.1. Inertia-dominated, annular liquid jets 

For steady, inertia-dominated jets the solutions of equations (35) and (29) are respectively 

BRob2 = U, (42) 

B =  (43) 

where a is a (constant) non-dimensional volumetric flow rate and /3 is an integration constant. Without 
loss of generality a may be set equal to one. Furthermore, if equation (43) is assumed to be valid up to 
the nozzle exit, then p = 213,  since B(O), Ro(0) and b2(0) may be set equal to one without loss of 
generality. Note that if 2 = 0, equation (43) is the famous Torricelli free fall formula. Note also that the 
results presented in Sections 2.1 and 2.2 correspond to G = Fr. 

For steady flows, equations (28) and (39) may be written, after rather tedious algebraic 
manipulations, as 

d B 2  - $2(dB/dz)2 - 2*2B6 - (4$B/ We)(2$B)'12 
$1' = 

2 B W  + Y*) 

where 

(45) 

and (G, H) = (Fr, W) for the analysis presented in Section 2.1. Annular liquid jets in microgravity 
correspond to G = 00. 
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Equations (44)-(49) indicate that the values of R,,, R,, and R;, or R;, must be specified at the 
nozzle exit, i.e. at z = 0. Alternatively, one may specify R,, Rb and b2(0) at the nozzle exit. For 
RL = tan 6, and B(0) = Ro(0) = b2(0) = 1 it may be easily shown from equations (49), (48) and (44) 
that 

1 
D(0) = ___ 2(1 +1)(;+(2+2)tanso). 

It must be pointed out that equations (44H51) reduce to those of Reference 1 when there are no 
non-homogeneous, conservative body forces, i.e. when 2 = 0. 

3.2. Capillarity-dominated, annular liquid jets 

The steady state solutions of equations (29), (35 )  and (41) are 

1 We 
2 R, = --(PI - P,), b2 =-, 

BRO 

where G = Fr for the analysis presented in Section 2.2. 

means of, for example, the secant method to determine B. 
Equation ( 5 3 )  is a non-linear algebraic one which may be solved iteratively at each axial location by 

3.3. Invariants of the leading-order equations 

For steady, annular liquid jets, equation (29) may be integrated analytically to yield 

where M is a constant that may be determined from the conditions at the nozzle exit. 

conservative body forces acting on the annular liquid jet. 
Equation (54) corresponds to Torricelli’s free fall formula and accounts for the non-homogeneous, 

3.4. Remarks 

The velocity u7; used in the non-dimensionalization was left unspecified in Sections 2 and 3. For 
inertia-dominated, annular liquid jets, i.e. when inertia is larger than surface tension, this velocity may 
be taken to be a constant reference velocity at the nozzle exit and the Froude and Weber numbers used 
in the text have their conventional meanings. For capillary, annular liquid jets, surface tension is larger 
than inertia effects and the reference velocity may be taken as u7; = (o*/p*Ri)’/’, so that We = 1 and 
Fr = l /eBo,  where BO = p*g*Ri2/o* is the Bond number. Note that the Foude number used 
throughout the text could also be written as Fr = where P = u;2/g*R7;2 is a Froude number 
based on the jet’s mean radius at the nozzle exit. In this case the analysis presented in Section 2 
corresponds to P = O(e). 
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The analysis presented in Sections 2 and 3 also holds when b* is replaced by h* = b* cos 8 (see 
equation (5)) ,  where tan 9 = aR/az, i.e. when the thickness of the jet is measured perpendicularly to 
the jet's mean radius rather than perpendicularly to the symmetry axis, because it may be easily shown 
using equations (19) and (20) and R = (R,  + R2)/2 that h = h*/Rt = E2b, + O(c4). 

If the potential of non-homogeneous, conservative body forces is 

where m is a natural number, the perturbation methods employed in this paper may also be used to 
analyze the fluid dynamics of inviscid, slender, thin, annular liquid jets subject to equation (55) if the 
non-homogeneous, conservative body forces are important at leading order as follows. For example, if 
AH = ~ ~ ~ 2 ,  where 2 = 0(1) and AH = mA*/p*u;T2R;Tm, equations (28), ( 3 9 ,  (39) and (29) still hold 
provided that b; is replaced by bF+' in these equations. 

Finally, it must be emphasized that the formulation presented in this paper is a long-wave 
approximation which is not strictly valid at the nozzle exit and near the convergence point where the 
annular liquid jet merges onto the symmetry axis to become a solid one, because it does not account 
for the effects of the solid walls at z = 0 and the fact that the jet is not sufficiently thin at the 
convergence point. Despite this, the model has been applied from the nozzle exit to the convergence 
point. 

4. PRESENTATION OF RESULTS 

The leading-order equations derived in Sections 2 and 3 have been used to analyse the fluid dynamics 
of steady, long or slender, annular liquid jets subject to non-homogeneous, conservative body forces by 
means of an adaptive finite difference method similar to the one developed by Rarno~ .~  This method 
maps the curvilinear geometry of the jet into a unit square and the equations in the transformed domain 
are solved by means of finite difference methods. The steady state results obtained with the adaptive 
technique were in remarkably good agreement with the solution of the equations presented in Section 
3.1, which were solved by means of a fourth-order-accurate Runge-Kutta method. In fact, the local 
errors defined by 

z A  
G 3bi 

Elocd(z) = iB2 - - + - - M 

were found to be about lop3  and 
the Runge-Kutta method respectively for a step size Az = 0.01. The global errors defined by 

for the adaptive finite difference technique of Reference 7 and 

where NP denotes the number of grid points in z, were found to increase as the annular liquid jet's 
convergence length increased. 

The fact that the adaptive method yields larger errors than the Runge-Kutta technique is to be 
expected because of the higher accuracy of the latter and the fact that the adaptive method employs 
conservative, upwind finite differences for the convection terms which ensure conservation of linear 
momentum but do not conserve mechanical energy. In any case the differences in both the shapes and 
invariants of annular liquid jets were found to be so small that only the results obtained with the 
Runge-Kutta technique are reported in this section. 
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Some sample results illustrating the leading-order shapes of steady, upward and downward, annular 
liquid jets are presented in the next two subsections. These results correspond to B(0) = 
Ro(0) = b2(0) = 1 and AZ = 0.001. 

4.1. Steady, upward, annular liquid jets 

For upward, annular liquid jets the gravitational acceleration has the opposite direction to that of the 
axial velocity component of the liquid at the nozzle exit. Upward, annular liquid jets may be analysed 
by means of the equations presented in this paper by using a negative gravitational acceleration, i.e. a 
negative Froude number. 

Figure 2 shows the annular jet's leading-order axial velocity component, mean radius and thickness 
as functions of the vertical co-ordinate z for We = 100, Fr = -1, three different values of the non- 
dimensional body force contant 2 and dRo(0)/dz = -0-25,O and 0-25. The results presented in the top 
and middle rows of Figure 2 indicate that the effect of the non-homogenous, conservative body force is 
to increase the leading-order axial velocity and decrease the leading-order mean radius for inwardly 
and axially directed flows at the nozzle exit and that the axial location at which the axial velocity 
component of upward, annular liquid jets becomes zero is not a monotonic function of the non- 
dimensional body force constant and nozzle exit angle. In fact, the results presented in the first and 
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Figure 2. Leading-order axial velocity component (left column), mean radius (middle column) and thickness (right column) for 
ineda-dominated, upward, annular liquid jets. Top row: dRo(0)/dz -0.25; middle roz: dRo(0)/& = 0; bottom row: 

dRo(0)/dz = 0.25; We = 100, Fr = -1, A = 1 (full lines), A = 0 (broken lines), A = 10 (chain lines) 
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second rows of Figure 2 for 2 = 1 indicate that the stagnation point occurs further downstream than 
that for 2 = 0; however, the stagnation point moves upstream as the non-dimensional body force 
constant is increased. 

For axially directed flows at the nozzle exit the results illustrated in Figure 2 indicate that the 
location of the stagnation point moves downstream as 2 is increased; similar trends are observed for 
outwardly directed flows at the nozzle exit as indicated in the third row of Figure 2.  This row also 
shows that the jet's thickness and mean radius are weak functions of the vertical co-ordinate for 2 = 1 
and 10 respectively. Furthermore, the slope of the jet's mean radius increases as the non-dimensional 
body force constant is increased. The third row of Figure 2 also illustrates that the concavity of the 
axial velocity component is downwards for 2 < 1 and upwards otherwise. 

It must be noted that in the absence of non-homogeneous, conservative body forces the stagnation 
point occurs at an axial location equal to -Fr /2  for dRo(0)/dz = 0 (see equation (43)) as clearly 
shown in Figure 2. This axial location is nearly independent of the nozzle exit angle for 2 = 0 and is 
smaller than that for 2 # 0. 

The results presented in Figure 2 also indicate that the axial velocity component is very sensitive to 
the nozzle exit angle for 2 > 1 and is larger than that at the nozzle exit for 2 = 10 and inwardly or 
axially directed flows at the nozzle exit. 
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Figure 3. Leading-order axial velocity component (left column), mean radius (middle column) and thickness (right column) for 
inertia-dominated, upward, apular liquid jets. Top row: dR,(O)/dz = -0.25; middle row: dR,(O)/& = 0; bottom row: 

d&(O)/dr = 0-25; A = 1, Fr = - 1, We = w (full lines), We = 1 (broken lines), We = 100 (chain lines) 
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Figure 3 illustrates the effects of the Weber number and nozzle exit angle on the leading-order axial 
velocity component, mean radius and thickness of upward, annular liquid jets subject to non- 
homogeneous, conservative body forces. The results shown in this figure indicate that the shape of 
annular liquid jets is nearly independent of the Weber number for We 2 100, the mean radius 
decreases and the axial velocity component increases as the Weber number is increased; the location of 
the stagnation point also increases as the Weber number is increased. It must be noted that for the 
values of the parameters considered in Figure 3 the axial velocity component first increases and then 
decreases for inwardly directed flows at the nozzle exit and decreases monotonically for axially or 
outwardly directed flows; the jet’s thickness is a monotically increasing function of the axial co- 
ordinate regardless of the flow direction at the nozzle exit, whereas the jet’s mean radius decreases and 
increases for inwardly or axially and outwardly directed flows respectively at the nozzle exit. 

In Figure 4 the effects of the Froude number on the mean radius, thickness and axial velocity 
component of upward, annular liquid jets are shown as functions of the nozzle exit angle. Before 
discussing this figure, it is convenient to remark that in the absence of both gravity and non- 
homogeneous, conservative body forces the analysis presented in this paper indicates that the leadmg- 
order axial velocity is equal to one (see equation (43)). 

Figure 4 indicates that the shape of annular liquid jets is nearly independent of the Froude number 
for Fr < - 1000. For inwardly and axially directed flows at the nozzle exit the jet’s mean radius 
increases and its thickness decreases as the Froude number is increased in absolute value; for 
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Figure 4. Leadingorder axial velocity component (left column), mean radius (middle column) and thickness (right column) for 
inertia-dominated, upward, annular liquid jets. Top row: dR,(O)/& = -0.25; middle row: dR,(O)/& = 0; bottom row: 

d&(O)/& = 0.25; We = 100, A = 1 ,  Fr = -1 (full lines), Fr = -1000 (broken lines), Fr = -XI (chain lines) 
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outwardly directed flows, however, the mean radius increases substantially as the Froude number is 
increased. Figure 4 also shows that the jet's axial velocity component is not a monotonic function of 
the nozzle exit angle. In fact, this velocity increases and decreases monotonically as a function of the 
axial co-ordinate for inward and outward flows respectively at the nozzle exit for Fr < - 1000. For 
these Froude numbers and axially directed flows at the nozzle exit the axial velocity component 
exhibits an inflection point. 

The results shown in Figure 4 clearly indicate that the effect of the non-homogeneous conservative 
body forces is to move the stagnation point downstream from the nozzle as the Froude number is 
increased in absolute value. Figure 4 also shows that for Fr = -1 the axial velocity component first 
increases and then decreases as a fimction of z. 

The results presented in Figures 2-4 were obtained from the numerical solution of the equations 
presented in Section 3.1; therefore they correspond to inertia-dominated, upward, annular liquid jets. 
The mean radius, thickness and axial velocity component of capillary, upward, annular liquid jets are 
shown in Figure 5 as functions of the Froude number and non-dimensional body force constant. This 
figure corresponds to B(0) = b,(O) = 1. Note that, since these jets preserve a cylindrical shape, their 
radii are not illustrated. 
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X X 

Figure 5. Leadipg-order axial velocity component (left column) and thickness (right column) for capillary, upward, annular liquid 
jets. Top row: A = 1 ,  Fr = -1  (full lines), Fr =-- 1000 (broken lines), Fr = - 00 (chain lines); bottom row: Fr = - 1 ,  A = 1 

(full lines), A = 0 (broken lines), A = 10 (chain lines) 
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The first row of Figure 5 indicates that the axial velocity is a decreasing function of z and decays 
very little for Fr < - 1000, while the second row shows that the axial location of the stagnation point 
is a monotonically increasing function of the non-homogeneous, conservative body forces, i.e. this 
point moves downstream as the non-dimensional body force constant is increased. 

4.2. Steady, downward, annular liquid jets 

In Figure 6 the effects of the non-dimensional body force constant and nozzle exit angle on the axial 
velocity component, mean radius and thickness of inertia-dominated, downward, annular liquid jets are 
illustrated. For inward flows at the nozzle exit both the mean radius and thickness are weak functions of 
the axial co-ordinate for 2 = 0 and 1, while the velocity increases substantially as the non-dimensional 
body force constant is increased. Note that the axial velocity is not a monotonic fimction of 2, since it 
is higher in the absence of non-homogeneous, conservative body forces than for 2 = 1. 

For axially directed flows at the nozzle exit the second row of Figure 6 shows that the jet's mean 
radius increases and its thickness decreases as a function of z; both the mean radius and thickness are 
monotically increasing fimctions of 2. The axial velocity component is a monotonically increasing 
function of z in the absence of non-homogeneous, conservative body forces and decreases monotoni- 
cally as 2 is increased. Note that for the flows considered here the non-homogenous, conservative body 
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Figure 6. Leading-order axial velocity component (left column), mean radius (middle column) and thickness (right column) for 
inertia-dominated, downward, annular liquid jets. Top row: d&(O)/+ = -0.25; middle 'ow: d&(O)/dz = 0; bottom row: 

dR,(O)/& = 0.25; We = 100, Fr = 1, A = 1 (hll lines), A = 0 (broken lines), A = 10 (chain lines) 



23 6 J. I. RAMOS 

forces tend to decrease the jet’s thickness, while the gravitational acceleration increases the axial 
velocity component and decreases the jet’s thickness. These two body forces are responsible for the 
shapes presented in the second row of Figure 6. 

Figure 6 indicates that the results for outward flows at the nozzle exit exhibit the same trends as 
those for axial ones. 

Figure 7 shows the effects of the Weber number and nozzle exit angle on the axial velocity 
component, mean radius and thickness of inertia-dominated, downward, annular liquid jets. The most 
remarkable aspects of this figure are that (i) there are very few differences between the results for 
We 2 100 for zero and positive angles at the nozzle exit, (ii) annular jets with We = 1 merge on the 
symmetry axis for the nozzle exit angles considered in this paper, (iii) the jet’s mean radius is a 
monotonically increasing function of z for We = 00 and the values of the parameters considered in this 
paper and (iv) the non-homogeneous, conservative body forces cause a flow acceleration near the 
nozzle for inwardly directed flows at the nozzle exit; this acceleration is followed by a deceleration as 
indicated in the relative maximum of the first row of Figure 6. 

In Figure 8 the effects of the Froude number and nozzle exit angle are illustrated. This figure shows 
that the annular liquid jet’s fluid dynamics is nearly independent of the Froude number for Fr 3 1000; 
the axial velocity component is very sensitive to the nozzle exit angle and decreases as z increases for 
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Figure 7. Leading-order axial velocity component (left column), mean radius (middle column) and thickmss (right column) for 
inertia-dominated, downward, -annular liquid jets. Top row: dR,,(O)/dz = -0.25; middle row: dR,,(O)/dz = 0; bottom row: 

dRo(O)/dz = 0.25; A = 1,Fr = 1, We = 00 (111 lines), We = 1 (broken lines), We = 100 (chain lines) 
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Figure 8. Leadmg-order axial velocity component (left column), mean radius (middle column) and thickness (right column) for 
inertia-dominated, downward, annular liquid jets. Top row: dfl,,(O)/dz = -0.25; middle row: dfl,,(O)/& = 0; bottom row: 

dR,-,(O)/& = 0.25; We = 100, A = I ,  Fr = 1 (full lines), Fr = lo00 (broken lines), Fr = 00 (chain lines) 

Fr = 1 and axially and outwardly directed flows at the nozzle exit, whereas it increases with z for 
inward flows. Figure 8 also shows that for inward flows at the nozzle exit and Fr = 1 the jet's mean 
radius first increases and then decreases as a function of z. 

Figure 9 indicates that the axial velocity of capillary, downward, annular liquid jets is an increasing 
function of z and increases very little for Fr 2 1000, while the axial velocity component is a 
monotonically decreasing function of the non-homogeneous, conservative body forces. 

5. CONCLUSIONS 

Perturbation methods have been employed to analyse the fluid dynamics of inviscid, irrotational, 
incompressible, axisymmetric, slender, thin, annular liquid jets subject to gravity, surface tension and 
non-homogeneous, conservative body forces when these forces are important at leading order. The 
small parameter is the jet's slenderness ratio, which is the ratio of the jet's mean radius at the nozzle 
exit to a characteristic axial dimension. Depending on the magnitude of the Weber number, two 
different flow regimes have been identified. The inertiadominated regime is chmcterized by large 
Weber numbers and requires the use of the dynamic (normal stress) boundary conditions at fourth 
order in the perturbation parameter to close the leading-order equations. The capillary regime achieves 
closure at leading order, is characterized by small Weber numbers and predicts a cylindrical jet at 
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Figure 9. Leadingorder axial velocity component (left column) and thickness (right column) for capillary, downwTd, annular 
liquid jets. Top row: A = 1, Fr = 1 (full lines),-Fr = 1000 (broken lin_es), Fr = 00 (chain lines); bottom row: Fr = 1, A = 1 (full 

lines), A = 0 (broken lines), A = 10 (chain lines) 

leading order. It has also been shown that the capillary regime has analytical solutions for steady flows, 
whereas the inertia-dominated one is highly non-linear on account of the inertia terms and non- 
homogeneous, conservative body forces and requires a numerical solution. 

Steady state solutions of the inertia-dominated regime for both upward and downward, annular 
liquid jets have been obtained by solving the steady equations by means of a fourth-order-accurate 
Runge-Kutta method for different values of the Froude and Weber numbers, body force constant and 
nozzle exit angle. Solutions have also been obtained by solving the time-dependent governing 
equations by means of an adaptive finite difference technique which maps the time-dependent, 
curvilinear geometry of annular liquid jets into a unit square until an asymptotic steady state is reached. 
The results of the two techniques were nearly identical for the flow conditions analysed in this paper. 

The numerical results show that the fluid dynamics of steady, annular liquid jets is very sensitive to 
the Froude and Weber numbers and nozzle exit angle in the presence of non-homogeneous, 
conservative body forces. For upward jets with inwardly or axially directed velocities at the nozzle exit 
the effects of the non-homogeneous, conservative body forces is to increase the leading-order axial 
velocity component, decrease the jet's mean radius and move the stagnation point downstream. For 
downward jets with outward velocity at the nozzle exit the axial velocity component decreases 
monotonically as the non-homogeneous, conservative body forces are increased. 

It has also been shown that the fluid dynamics of both upward and downward annular liquid jets is 
almost independent of the Froude and Weber numbers for sufficiently large values of these parameters. 
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